Enumeration of (k, 2)-noncrossing partitions
نویسندگان
چکیده
A partition Π of the set [n] = {1, 2, . . . , n} is a collection B1, B2, . . . , Bd of nonempty disjoint subsets of [n]. The elements of a partition are called blocks. We assume that B1, B2, . . . , Bd are listed in the increasing order of their minimum elements, that is minB1 < minB2 < · · · < minBd. The set of all partitions of [n] with d blocks is denoted by P (n, d). The cardinality of P (n, d) is the well-known Stirling number of the second kind [8], which is usually denoted by S(n, k). Any partition Π can be written in the canonical sequential form π1π2 · · ·πn, where i ∈ Bπi (see, e.g. [4]). From now on, we identify each partition with its canonical sequential form. For example, if Π = {1, 4}, {2, 5, 7}, {3}, {6} is a partition of [7], then its canonical sequential form is π = 1231242 and in such a case we write Π = π.
منابع مشابه
ON 2-REGULAR, k-NONCROSSING PARTITIONS
In this paper we prove a bijection between 2-regular, k-noncrossing partitions and k-noncrossing enhanced partitions. Via this bijection we enumerate 2-regular, 3-noncrossing partitions using an enumeration result [1] for enhanced 3-noncrossing partitions. In addition we derive the asymptotics for the numbers of 2-regular, 3-noncrossing partitions using the BirkhoffTrijtzinky analytic theory of...
متن کاملEnumeration of bilaterally symmetric 3-noncrossing partitions
Schützenberger’s theorem for the ordinary RSK correspondence naturally extends to Chen et. al’s correspondence for matchings and partitions. Thus the counting of bilaterally symmetric k-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for 3-noncrossing partitions, we use a different technique to develop a MAPLE package for 2-dimensional v...
متن کاملReduction of m-regular noncrossing partitions
In this paper, we present a reduction algorithm which transforms m-regular partitions of [n] = {1, 2, . . . , n} to (m−1)-regular partitions of [n − 1]. We show that this algorithm preserves the noncrossing property. This yields a simple explanation of an identity due to Simion-Ullman and Klazar in connection with enumeration problems on noncrossing partitions and RNA secondary structures. For ...
متن کاملCrossings and Nestings in Colored Set Partitions
Chen, Deng, Du, Stanley, and Yan introduced the notion of k-crossings and k-nestings for set partitions, and proved that the sizes of the largest k-crossings and k-nestings in the partitions of an n-set possess a symmetric joint distribution. This work considers a generalization of these results to set partitions whose arcs are labeled by an r-element set (which we call r-colored set partitions...
متن کاملEnumeration of 1- and 2-crossing Partitions with Refinements
An enumeration of the 1-crossing partitions of [n] into k blocks by bijection with ordered trees with n edges, k internal nodes, and root degree j = 4 is presented. A semi-bijection of these ordered trees to Dyck paths of semilength n, k peaks, and j = 4 last peak height is used to derive a conjectured formula for the number of 1-crossing partitions of [n] with k blocks. We also explore some na...
متن کاملNoncrossing partitions with fixed points
The noncrossing partitions with each of their blocks containing a given element are introduced and studied. The enumeration of these partitions is described through a polynomial of several variables which is proved to satisfy a recursive formula. It is shown that each variable increased by one is a factor of this polynomial.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008